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intro to file and data

This file is written to do the calculations on efficiency of the Simple Majority (SM) and d’Aspremont and
Gérard-Varet (AGV) mechanism in the experiments belonging to the paper: “Hoffmann and Renes, Flip a
coin or vote: An experiment on the implementation and efficiency of social choice mechanisms” published in
Experimental Economics, 2021.

In the first chunk the file loads the required data in 3 tibbles: 1. AGV_report_ vectors transfers: an overview
of the action-space in the AGV including corresponding transfers for each vector of reported valuations. Since
the actions-space in the AGV is equal to the type-space we can easily take the type-space from this tibble
when needed. 2. stata_ data_ex_ante: the experimental data from the first 12 rounds. The first 12 rounds
are played in the ex ante condition 3. stata_data_ad_ interim: the experimental data from the last 6 rounds.
The last 6 rounds are played in the ad interim condition

summary of the experiment.

In the experiment, subjects interact in groups of three and each group faces the question whether or not to
implement an indivisible public project. Non-implementation results in a zero payoff for all subjects. If the
project is implemented each player receives a project payoff equal to her valuation. The private valuations
are drawn independently from a known uniform distribution on a given set of four values that depend on the
treatment. The distribution and its support are common knowledge and remain the same within a session.

Each of the 18 experimental rounds consists of two stages. In the first stage a mechanism is selected for
each group. Second, the group decides about the implementation of the public project through the chosen
mechanism. In all treatments the same four mechanisms are used and in each round subjects choose between
two of them. The mechanisms considered are Simple Majority (SM), d’Aspremont and Gérard-Varet (AGV)
mechanism, flipping a fair coin (RAND), or the No-Implementations Status-quo (NSQ).

In theory the AGV is most efficient, followed by Simple Majority, the efficiency ranking of RAND and NSQ
depends on the expected values for the project which vary over the 4 treatments. Whether the AGV is
actually more efficient in the lab than SM depends on subjects’ behavior and especially on the question
whether they truthfully report their type (AGV) and vote sincerely (SM mechanism). Theoretically the
AGYV is incentive compatible, such that truthful reporting should result in equilibrium. Similarly in the SM
mechanism, sincere voting is a Bayes-Nash equilibrium. However, if subjects misreport their valuation or
vote insincerely, the realized efficiency of both mechanisms becomes an empirical matter.

#calculations of efficiency To measure efficiency, we do not simply report the average pay-off obtained in the
lab. This measure of efficiency would be strongly influenced by the realization of private valuations as well
as the mechanism choices by the random dictator. Instead, we use the observed distribution of reports/votes
made by subjects with a specific type in a treatment as the behavioral strategy for that type



To make the calculations easier, we first create the behavioral strategies of each treatment-type for both
the SM and AGV. To identify the behavioral strategies, we calculate the distribution of actions taken by
subjects in each combination of treatment-mechanism-type. This distribution is assumed to be the behavioral
(mixed) strategy played by this type in this treatment-mechanism. For each treatment-mechanism we thus
get four strategies. With these strategies we can calculate the expected value of playing another round for
each treatment-mechansim-type in the ad-interim stage, and, by averaging over types, for each treatment-
mechanism ex ante.

The strategies are saved in two tibbles: strategy  AGV and stragy_ SM

## # A tibble: 5 x b
## treatment_number Valuation total_rounds report likelihood

## <dbl+1lbl> <dbl> <dbl> <chr> <dbl>
## 1 1 [symmetric] -3 42 -7 NA
## 2 1 [symmetric] -3 42 -3 0.595
## 3 1 [symmetric] -3 42 -2 NA
##t 4 1 [symmetric] -3 42 -1 0.167
## 5 1 [symmetric] -3 42 1 0.143

## # A tibble: 5 x 3
## treatment_number Valuation vote_in_favor

## <dbl+1lbl> <dbl> <dbl>
## 1 1 [symmetric] -3 0.0339
## 2 1 [symmetric] -1 0.0769
## 3 1 [symmetric] 1 1

## 4 1 [symmetric] 3 0.917
## 5 2 [right skewed] -3 0.0889

With the identified behavioral strategies, we use a function to calculate exected values for each mechanism.
We first calculate the likelihood of implementation for each possible vector of types (state of the world and
type-space) in each mechanism-treatment combination. Given the surplus (sum over types in vector of types
/ state of the world) and the implementation probability for the vector of types, we can find the expected
value of each mechanism in a treatment by taking the average over the type-space. We do the same for
the theoretical surplus using the Bayes-Nash equilibrium predictions of sincere voting (SM) and truthful
revelation (AGV). This yields the following results.

## # A tibble: 4 x 10
## treatment_name TH_surplus_AGV lab_surplus_AGV lost_AGV lost_AGV_perc

## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Symmetric 1.59 1.18 0.411 0.258
## 2 Right skewed (+7) 4.36 3.84 0.523 0.120
## 3 Left skewed (-7) 1.36 0.926 0.434 0.319
## 4 Robustness 3.28 2.93 0.353 0.108
## # . with 5 more variables: TH_surplus_SM <dbl>, lab_surplus_SM <dbl>,
## # lost_SM <dbl>, lost_SM_perc <dbl>, treatment <dbl>

non-normalized comparison of realized utility

We could make a similar table using the realized random draws in the lab. To correct for the draws, we will
take the type-vector (state of the world) and choice of mechanism as given, and calculate the utility that
would have realized in theory for this type-vector/mechanism in each observation.



Table 15: Theoretical and non-normalized average group surplus with AGV and
SM (ex ante)

## # A tibble: 4 x 9
## # Groups:  treatment_number [4]

## treatment_number avg_surplus_lab_1 avg_surplus_lab_2 avg_surplus_theor~
#t <dbl+1bl> <dbl> <dbl> <dbl>
## 1 1 [symmetric] 1.28 1.35 1.56
## 2 2 [right skewed] 3.32 4.65 3.92
## 3 3 [left skewed] 0.514 0.692 1

## 4 4 [three negative valu~ 3.69 3.12 4.04
## # ... with 5 more variables: avg_surplus_theory_2 <dbl>, difference_AGV <dbl>,
## # difference_AGVPerc <dbl>, difference_SM <dbl>, difference_SMPerc <dbl>

effect of different reporting strategies AGV

With the functions defined before, we can change the behavioral strategies used as input to see the effect of
not mis-reporting the sign, or not mis-reporting with the same sign. we change the behavioral strategies to
exclude reports with an incorrect sign, and un-truthful reports with the correct sign respectively, and then
redo the calculations of realized efficiency to compare the effects on efficiency of both types of misreporting.

##£Table 14: Effects of different types of false reports (ex ante)

Best responses in the AGV

In the previous section we looked at the effect on group surplus if all subjects simultaneously changed to
a strategy without misreported signs or without exaggeration, but not if it is best-response for individual
subjects to adopt the truthful strategy given what the other subjects are doing. In this section we show the
pay-off effects of each possible report, per type-treatment, under the assumption that other subjects use the
behavioral strategies identified before.

The figure show per treatment-type combination the expected value of sending each of the possible reports.
The red dots highlight the truthful report in each sub-figure. The crosses indicate the best-responses of
each type. In every sub-figure we see that the red-dots are on a cross, such that truthful reporting was part
of the best-response for every type in the experiment. In all treatments except the Robustness treatment,
the best-responds is unique for all types. In the Robustness treatment all negative reports have the same
expected value for all types, so they are all either part of best-response or not.



Figure 4. Empirical best responses in the AGV mechanism
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Comparing the efficiency of the mechanisms in different settings

We make a statistical comparison between the efficiency of the AVG and SM by looking at efficient imple-
mentation. In every period, each group has a binary decision, implement or not, regardless of the mechanism
chosen. Ex ante, the valuation of the individuals (and thus the efficiency of the project) cannot affect the
chosen mechanism. Furthermore, the probability of having an efficient project is fixed in each treatment.
So per treatment, in the ex ante rounds, we can compare the efficiency directly. Given that there is only
a limited number of observations available, we do so using the Fisher-exact test on the contigency table
AGV-SM v Efficient-Inefficient implementation. For consistency with the rest of the paper, we repeat the
analysis using a GLM-logit with clustered standard errors. Conclusisions are qualitatively the same, SM and
AGYV are hard to distuingish in terms of efficiency unless there is a very skewed distribution (Robustness).

##

## 7, Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harv
## 7 Date and time: vr, jun 11, 2021 - 15:15:04

## \begin{tablel}[!htbp] \centering

##  \caption{}

##  \label{}

## \begin{tabular}{@{\extracolsep{5pt}}lccccc}

## \\[-1.8ex]\hline

## \hline \\[-1.8ex]

## & \multicolumn{5}{c}{\textit{Dependent variable:}} \\



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

\cline{2-6}
\\[-1.8ex] & \multicolumn{5}{c}{efficient\_implementl} \\
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5)\\
\hline \\[-1.8ex]
GroupDecisionRule2 & 0.048 & 0.048 & $-$0.387 & $-$0.644 & $-$1.910 \\
& (0.447) & (0.499) & (0.297) & (0.420) & (1.319) \\
& & & & & \\
treatment\_number2 & 0.259 & & & & \\
& (0.304) & & & & \\
& & & & & \\
treatment\_number3 & 0.128 & & & & \\
& (0.435) & & & & \\
& & & & & \\
treatment\_number4 & 0.971 & & & & \\
& (0.832) & & & & \\
& & & & & \\
GroupDecisionRule2:treatment\_number2 & $-$0.435 & & & & \\
& (0.520) & & & & \\
& & & & & \\
GroupDecisionRule2:treatment\_number3 & $-$0.692 & & & & \\
& (0.592) & & & & \\
& & & & & \\
GroupDecisionRule2:treatment\_number4 & $-$1.958%$"{*x}$ & & & & \\
& (1.064) & & & & \\
& & & & & \\
Constant & 1.5143 {x*x}$ & 1.5143 {x*x}$ & 1.7733 {*x*x}$ & 1.6423 {x*x}$ & 2.4853 {**x}$ \\
& (0.252) & (0.282) & (0.190) & (0.382) & (1.083) \\
& & & & & \\
\hline \\[-1.8ex]
Observations & 435 & 136 & 122 & 126 & 51 \\
Log Likelihood & $-$205.552 & $-$63.370 & $-$55.706 & $-$63.089 & $-$23.386 \\
Akaike Inf. Crit. & 427.104 & 130.740 & 115.412 & 130.178 & 50.773 \\
\hline
\hline \\[-1.8ex]
\textit{Note:} & \multicolumn{5}{r}{$ {*}$p$<$0.1; $ " {**}$p$<$0.05; $~{***x}$p$<$0.01} \\
\end{tabular}
\end{table}

Table 6: Efficient implementation in the AGV and SM mechanisms,

Data generated and tables calculated to compare Efficient implementation in SM and AGV mechanisms:

##
##
##
##
##
##
##
##
##
##
##

Cell Contents

Total Observations in Table: 435



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

|

logit_data$efficient_implement | 1] 2 | Row Total |
------------------------------- |-———— | |
0 | 34 | 48 | 82 |
------------------------------- |-———— | |
1 189 | 164 | 353 |
------------------------------- |-
Column Total | 223 | 212 | 435 |

| | |

Sample estimate odds ratio: 0.6153388

Alternative hypothesis: true odds ratio is not equal to 1
p = 0.05081022

95} confidence interval: 0.3654483 1.027296

Alternative hypothesis: true odds ratio is less than 1

p = 0.03216401

95% confidence interval: 0 0.9510962

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9819732
95% confidence interval: 0.3958855 Inf

[1] "treatment 1"

Cell Contents

Total Observations in Table: 136

logit_data$efficient_implement[logit_data$treatment_number ==

Fisher’s Exact Test for Count Data

logit_data$GroupDecisionRule[logit_

I I
11 | 13 | 24 |
——————————— [-==——————— | |
50 | 62 | 112 |
——————————— R
61 | 75 | 136 |

| |



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Sample estimate odds ratio: 1.048891

Alternative hypothesis: true odds ratio is not equal to 1

p:

95% confidence interval:

1

0.388677 2.786917

Alternative hypothesis: true odds ratio is less than 1

p:

95% confidence interval:

0.6316962

0 2.417231

Alternative hypothesis: true odds ratio is greater than 1

p=

95% confidence interval:

[1]

0.545521

"treatment 2"

Cell Contents

0.4503251 Inf

Total Observations in Table: 122

logit_data$efficient_implement [logit_data$treatment_number ==

Sample estimate odds ratio: 0.6814105

Alternative hypothesis: true odds ratio is not equal to 1

P =

95% confidence interval:

0.4776948

0.231282 1.94056

Alternative hypothesis: true odds ratio is less than 1

p=

95% confidence interval:

0.2871518

0 1.669619

Alternative hypothesis: true odds ratio is greater than 1

p:

0.8512903

logit_data$GroupDecisionRule[logit_



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

95% confidence interval: 0.2717443 Inf

[1] "treatment 3"

Cell Contents

Total Observations in Table: 126

logit_data$efficient_implement[logit_data$treatment_number ==

Sample estimate odds ratio: 0.5281154

Alternative hypothesis: true odds ratio is not equal to 1
p = 0.1808819
95% confidence interval: 0.1996456 1.375357

Alternative hypothesis: true odds ratio is less than 1

p = 0.108252

95% confidence interval: 0 1.196739

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9533384
95% confidence interval: 0.2305846 Inf

[1] "treatment 4"

Cell Contents

logit_data$GroupDecisionRule[logit_



## Total Observations in Table: 51
#it
##
## I
## logit_data$efficient_implement[logit_data$treatment_number == |
e | ! |
## 01 | |
R e R ! |
## 1| 24 | 16 | 40 |
| [ I
| | |
| | |

logit_data$GroupDecisionRule[logit_

e
#it Column Total
## -
##

#i#

## Fisher’s Exact Test for Count Data

2 ittt
## Sample estimate odds ratio: 0.153727

##

## Alternative hypothesis: true odds ratio is not equal to 1

## p = 0.01876982

## 95) confidence interval: 0.01433746 0.8806776

#it

## Alternative hypothesis: true odds ratio is less than 1

## p = 0.01581934

## 95J confidence interval: O 0.7115427

#i#t

## Alternative hypothesis: true odds ratio is greater than 1

## p = 0.9981219

## 95, confidence interval: 0.02129269 Inf

#i#

#it

#i#t

Table 16: Logistic regression on efficient implementation decisions in SM and
AGV

Logistical regressions testing the same results as in table 6 about the efficiency of the SM and AGV

##

##

#i#t Dependent variable:

# S
## efficient_implement

## (D) (2) (3 (4 (8
HH -
## GroupDecisionRule2 0.048 0.048 -0.387 -0.644 -1.910
## (0.447) (0.499) (0.297) (0.420) (1.319)
##

## treatment_number2 0.259

## (0.304)

##

## treatment_number3 0.128

## (0.435)



##

## treatment_numberd 0.971

## (0.832)

##

## GroupDecisionRule2:treatment_number2 -0.435

## (0.520)

##

## GroupDecisionRule2:treatment_number3 -0.692

## (0.592)

##

## GroupDecisionRule2:treatment_number4 -1.958%

## (1.064)

#i#

## Constant 1.514%%* 1.514%%% 1.773%%x 1.642%** 2, 485%x%
## (0.252) (0.282) (0.190) (0.382) (1.083)
##

#H -
## Observations 435 136 122 126 51

## Log Likelihood -205.552 -63.370 -55.706 -63.089 -23.386
## Akaike Inf. Crit. 427.104 130.740 115.412 130.178 50.773
##

## Note: *p<0.1; **p<0.05; **xxp<0.01

To demonstrate that the null-results are not simply due to power issues, but really a matter of having
different distributions, we repeat this test with the comparison between AVG and the mechanism with the
highest variance in efficient implementation, RAND. This is reported in the appendix.

power test of the efficient implementation tests

To show the power of the implementation tests, we replace the comparison between AGV and SM by the
comparison between AGV and RAND. From the remaining 2 mechanism, this is the one with the largest
variance and thus should be the most difficult to tell apart from the AGV mechanism in the tests. We run
the tests both in a contingency table, using the Fisher exact test and a logistic regression as before

Table 17: Contingency and Fisher exact test of the efficiency of AGV and RAND

##

##

## Cell Contents

## |- |
## | N |
## |- |
##

##

## Total Observations in Table: 305
##

##

##

## logit_data2%efficient_implement
## -
## 0

logit_data2$GroupDecisionRule
1] 4 | Row Total |

10



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Sample estimate odds ratio: 0.2553388

Alternative hypothesis: true odds ratio is not equal to 1
p = 3.933621e-06

95% confidence interval: 0.1381253 0.4693376

Alternative hypothesis: true odds ratio is less than 1

p = 2.678578e-06

95% confidence interval: 0 0.4285374

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9999994
95% confidence interval: 0.1515771 Inf

[1] "treatment 1"

Cell Contents

Total Observations in Table: 85

logit_data2$efficient_implement [logit_data2$treatment_number ==

Sample estimate odds ratio: 0.444719

Alternative hypothesis: true odds ratio is not equal to 1

11

logit_data2$GroupDecisionRule[log



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

p = 0.1529549
95% confidence interval:

0.134071 1.50938

Alternative hypothesis: true odds ratio is less than 1

p = 0.1100274
95% confidence interval:

0 1.262702

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9622505
95% confidence interval:

[1] "treatment 2"

Cell Contents

Total Observations in Tabl

0.1590572 Inf

e: 93

logit_data2$efficient_implement[logit_data2$treatment_number ==

Sample estimate odds ratio

: 0.3610233

Alternative hypothesis: true odds ratio is not equal to 1

p = 0.05828469
95% confidence interval:

0.111598 1.143852

Alternative hypothesis: true odds ratio is less than 1

p = 0.04417806
95% confidence interval:

0 0.9694531

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9871203
95% confidence interval:

0.1325008 Inf

12

logit_data2$GroupDecisionRule[log



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1] "treatment 3"

Cell Contents

Total Observations in Table: 92

logit_data2$efficient_implement [logit_data2$treatment_number ==

Sample estimate odds ratio: 0.1270912

Alternative hypothesis: true odds ratio is not equal to 1
p = 0.0002782865

95% confidence interval: 0.03386871 0.4398

Alternative hypothesis: true odds ratio is less than 1

p = 0.0002782865

95% confidence interval: 0 0.3704729

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9999701
95% confidence interval: 0.04123006 Inf

[1] "treatment 4"

Cell Contents

Total Observations in Table: 35

13

logit_data2$GroupDecisionRule[log

| logit_data2$GroupDecisionRule[log



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Sample estimate odds ratio: 0.07497124

Alternative hypothesis: true odds ratio is not equal to 1

p = 0.006419789
95% confidence interval:

0.005352736 0.6361567

Alternative hypothesis: true odds ratio is less than 1

p = 0.006419789
95% confidence interval:

Alternative hypothesis: true odds ratio is greater than 1

p = 0.9996699
95% confidence interval:

0 0.4871599

0.008032287 Inf

table 18: Logistic regression on efficient implementation decisions in AGV with
RAND.

Power test in logistic form.

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Dependent variable:

-0.821xxx —0.821%** —-1.031**x*x —2,094%**x -2.708

GroupDecisionRule4

treatment_number3

treatment _number4

treatment_number2

(0.150)

0.128
(0.435)

0.971
(0.832)

0.259
(0.304)

14

(0.168)

(0.262)

(0.435)

(1.683)



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##

GroupDecisionRule4:treatment_number3 -1.273%xx

(0.430)
GroupDecisionRule4:treatment_number4 -1.887
(1.241)
GroupDecisionRule4:treatment_number2 -0.210
(0.279)
Constant 1.514%%% 1.514%%*% 1.773%x% 1.642%xx 2. 485%x
(0.252) (0.282) (0.190) (0.382) (1.083)
Note: *p<0.1; *%p<0.05; **xxp<0.01
Call:
glm(formula = efficient_implement ~ GroupDecisionRule * treatment_number,
family = "binomial", data = logit_data2)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.2649 0.4001 0.5949 0.6306 1.3744
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5141 0.3330 4.547 5.45e-06 xxx*
GroupDecisionRule4 -0.8210 0.5463 -1.503 0.1329
treatment_number3 0.1281 0.4587 0.279 0.7800
treatment_number4 0.9708 0.8078 1.202 0.2295
treatment _number2 0.2589 0.4908 0.528 0.5978
GroupDecisionRule4:treatment_number3 -1.2732 0.7948 -1.602 0.1091
GroupDecisionRule4:treatment_number4 -1.8871 1.1358 -1.661 0.0966 .
GroupDecisionRule4:treatment_number2 -0.2101 0.7590 -0.277 0.7819
Signif. codes: O ’***’ 0.001 ’**x’ 0.01 ’%’ 0.05 ’>.” 0.1’ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 323.68 on 304 degrees of freedom
Residual deviance: 294.60 on 297 degrees of freedom
AIC: 310.6
Number of Fisher Scoring iterations: 5
Call:
glm(formula = efficient_implement ~ GroupDecisionRule, family = "binomial",

data = filter(logit_data2, logit_data2$treatment_number ==

)

Deviance Residuals:

Min 1Q Median 3Q Max

15



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##

-1.8509 0.6306 0.6306 0.6306 0.9005

Coefficients:

Estimate Std. Error z value Pr(>lz])
(Intercept) 1.5141 0.3330 4.547 5.45e-06 **x
GroupDecisionRule4 -0.8210 0.5463 -1.503 0.133

Signif. codes: O ’***’ 0.001 ’**’ 0.01 ’x’ 0.05 ’.” 0.1’ 7 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 90.328 on 84 degrees of freedom
Residual deviance: 88.123 on 83 degrees of freedom

AIC: 92.123

Number of Fisher Scoring iterations: 4

Call:
glm(formula = efficient_implement ~ GroupDecisionRule, family = "binomial",
data = filter(logit_data2, logit_data2$treatment_number ==
2))
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9646 0.5601 0.5601 0.5601 0.8826

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 1.7731 0.3605 4.918 8.74e-07 *xx
GroupDecisionRule4 -1.0311 0.5269 -1.957 0.0503 .

Signif. codes: 0 ’*¥*x’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 94.173 on 92 degrees of freedom
Residual deviance: 90.349 on 91 degrees of freedom

AIC: 94.349

Number of Fisher Scoring iterations: 4

Call:
glm(formula = efficient_implement ~ GroupDecisionRule, family = "binomial",
data = filter(logit_data2, logit_data2$treatment_number ==
3))
Deviance Residuals:

Min 1Q  Median 3Q Max
-1.9074 0.1980 0.5949  0.5949 1.3744

Coefficients:
Estimate Std. Error z value Pr(>|zl)
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##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(Intercept) 1.6422 0.3154  5.207 1.92e-07 **x
GroupDecisionRule4 -2.0942 0.5773 -3.628 0.000286 *x*x

Signif. codes: O ’*%%’ 0.001 ’x%x’ 0.01 ’x’ 0.056 ’.” 0.1’ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 103.470 on 91 degrees of freedom
Residual deviance: 89.656 on 90 degrees of freedom

AIC: 93.656

Number of Fisher Scoring iterations: 4

Call:
glm(formula = efficient_implement ~ GroupDecisionRule, family = "binomial",
data = filter(logit_data2, logit_data2$treatment_number ==
4))
Deviance Residuals:

Min 1Q Median 3Q Max
-2.2649 0.4001 0.4001 0.4001 1.2735

Coefficients:

Estimate Std. Error z value Pr(>lz])
(Intercept) 2.4849 0.7360 3.376 0.000735 *%*x*
GroupDecisionRule4 -2.7081 0.9958 -2.719 0.006540 **

Signif. codes: O ’***’ 0.001 ’**’ 0.01 ’%’ 0.05 ’>.” 0.1’ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 35.028 on 34 degrees of freedom
Residual deviance: 26.467 on 33 degrees of freedom
AIC: 30.467

Number of Fisher Scoring iterations: 5

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harv
% Date and time: vr, jun 11, 2021 - 15:15:05
\begin{table} [!'htbp] \centering
\caption{}
\label{}
\begin{tabular}{@{\extracolsep{5pt}}lccccc}
\\[-1.8ex]\hline
\hline \\[-1.8ex]
& \multicolumn{5}{c}{\textit{Dependent variable:}} \\
\cline{2-6}
\\[-1.8ex] & \multicolumn{5}{c}{ } \\
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5)\\
\hline \\[-1.8ex]
GroupDecisionRule4 & $-$0.821$ {***}$ & $-$0.8213 " {**x}$ & $-$1.031$ {***}$ & $-32.0948 {***}$ & $-
& (0.150) & (0.168) & (0.262) & (0.435) & (1.683) \\
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

& & & & & \\
treatment\_number3 & 0.128 & & & & \\
& (0.435) & & & & \\
& & & & & \\
treatment\_number4 & 0.971 & & & & \\
& (0.832) & & & & \\
& & & & & \\
treatment\_number2 & 0.259 & & & & \\
& (0.304) & & & & \\
& & & & & \\
GroupDecisionRule4:treatment\_number3 & $-$1.2733 {*xx}$ & & & & \\
& (0.430) & & & & \\
& & & & & \\
GroupDecisionRule4:treatment\_number4 & $-$1.887 & & & & \\
& (1.241) & & & & \\
& & & & & \\
GroupDecisionRule4:treatment\_number2 & $-$0.210 & & & & \\
& (0.279) & & & & \\
& & & & & \\
Constant & 1.5143 {***}$ & 1.5148 {**x}$ & 1.7738 {**x}$ & 1.642% {**x}$ & 2.485$ {*x}$ \\
& (0.252) & (0.282) & (0.190) & (0.382) & (1.083) \\
& & & & & \\
\hline \\[-1.8ex]
\hline
\hline \\[-1.8ex]
\textit{Note:} & \multicolumn{5MHr}{$ {*}$p$<$0.1; $ {*x}$p$<$0.05; $~{**xI$p$<$0.01} \\
\end{tabular}
\end{table}

#eflect of surplus/pay-off on the mechanism choices

In this section we compare the effect the payoff difference, theoretic and realized in the lab, has on the
mechanism choices. The incentives to choose one mechanism over the other depends on the difference in
utility obtained from choosing each mechanism. We calculate this difference first by using the theoretical
utility obtained in the Bayes-Nash equilibrium and then repeat the calculations for with the behavioral
strategies identified before. Doing so allows us to calculate the expected utility differences between two
mechansims per treatment in the ex ante stage, and per treatment-type in the ex ante stage for each
comparison and each treatment.

Expected value per type, normalized

To show the effect of the expected utility on the mechanism choices, we first calculate them here. to do

S0,

we stop the calculations of the overall expected value of a mechanism before its averaged out over the

possible types in a treatment and adjust for expected transfers in the AGV mechanism. We do so for the
first player out of the the three in any group. Since all types/strategies are symmetric and we use the full
set of permutations this is equivalent to the overall average.

##
##
##
##
##
##

# A tibble: 10 x 4

treatment V1 EV_utill_lab mechanism
<int> <dbl> <dbl> <chr>
1 1 -3 -0.822 sSM
2 1 -1 -0.295 sSM
3 1 1 0.757 SM
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## 4 1 3 2.15 SM
## 5 2 -3 -0.993 SM
##t 6 2 -1 -0.341 SM
## 7 2 1 0.757 SM
## 8 2 7 5.49 SM
## 9 3 -7 -1.84 SM
## 10 3 -1 -0.312 SM

We generate the same table for the theoretical pay-off of the SM and AGV mechanisms. For these calculations
we start from the truthful and sincere Bayes-Nash equilibria.

## # A tibble: 10 x 4
## treatment V1 EV_utill_th mechanism

#i# <dbl> <dbl> <dbl> <chr>
## 1 1 -3 -0.75 SM
## 2 1 -1 -0.25 SM
## 3 1 1 0.75 SM
## 4 1 3 2.25 SM
## 5 2 -3 -0.75 SM
## 6 2 -1 -0.25 SM
## 7 2 1 0.75 SM
## 8 2 5.25 SM
## 9 3 -7 -1.75 SM
## 10 3 -1 -0.25 SM

mechanism choices as a function of expected utility

using the output of the last subsection, we can compare choices and expected utility ex ante.

Since the ex ante stage only has very limited data, we display the comparison between the most interesting
mechanisms, SM and AGV, graphically here
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Difference Lab = Theoretic

Distribution of mechanism choices

-05 0.0 0.5 1.0
Efficiency difference

The x-axis displays the difference in surplus generated between the AGV and SM, where a positive value
indicates the AGV generates mor suprlus. Since the AGV is theoretically optimal, all blue dots (theory obs)
are to the right of 0 on the x-axis. The vertical dashed line shows the 0 point on the X-axis, an observation
there would indicate that the mechanisms generate exactly the same (expected) utility. The horizontal
dashed line shows the 50/50 point where exactly half of the time the comparison is made the AGV is chosen
and the other half of the time the SM, so the point indicating revealed indifference. If the surplus differences
have the expected effect, and we allow for some statistical noise, the observations are expected to be in
the north-east and sout-west quadrants. Although this is not enough for statistical tests, we see that this
is the case for 3/4 of the treatments based on lab-surplus and 2/4 of the treatments based on theoretical
calculations. Which is a first indication that the lab-surplus matters.

Ad interim mechanism choices

Ad interim we have more comparisons, since we have 4 treatments, with 4 types and 5 useful comparisons
per treatment-type (the theoretical and expected lab pay of difference between NSQ and RAND are the
same, so cannot be used to differentiate between them). So we can go beyond a simple picture and see if we
can find a statistical difference between the effect the incentives have on mechanism choice. First we make
a similar plot as before:

Figure 3: Distribution of expected utility differences and mecha-
nism choices including GLM prediction.

#Table 7: Effect of utility differences, lab and theory Here the difference in efficiency between the two
mechanisms considered is shown on the x-axis again, with the percentage split of subjects choosing each
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mechanism. Every marking denotes a specific treatment-type-comparison. The lines are estimated moving
averages.The curves clearly follow a sigmoid-like pattern and are, by construction of the data, bound between
0 and 1 (inlcusive). Furthermore, each strategy is determined on the level of a treatment, so there is a clear
relation (and common history) between the strategies of different types in the same treatment. For our
statistical tests, this means we have to take into account the fact that we have fractional responses, a sigmoid
mapping from x to y, and clustered errors at the treatment level. We therefore estimate a quasibinomial
model using the logistic link function and use a sandwich estimator for the standard errors clustered on th
treatment (see Cameron AC, Gelbach JB, Miller DL (2011). “Robust Inference with Multiway Clustering”,
Journal of Business & Ecomomic Statistics, 29(2), 238-249. doi: 10.1198/jbes.2010.07136)

The results below show that the lab calculations predict best. What the coefftest does not show is the
deviances of the model, so we report the summary of the larger model below it (note that the std errors and
p-values of this model are not correct, this does not affect the calcualations of the deviances).

##
##
## Dependent variable:

# e
##

## &N (2) (3

## -
## dif_Lab 1.670%%x* 1.203%x*
## (0.425) (0.572)
##

## dif_Theoretic 1.686%*x* 0.528
## (0.371) (0.449)
##

## treatment?2 -0.033 -0.130*%x* -0.056
## (0.038) (0.009) (0.042)
##

## treatment3 =0.333%%*% —-0.197%x* —0.292%%*
## (0.038) (0.010) (0.045)
##

## treatmentd —0.531%xx% —0.400%%* —0.489%%x*
## (0.005) (0.030) (0.037)
##

## Constant 0.412%x*x 0.243%*x 0.354%%*%
## (0.030)  (0.056)  (0.056)
##
##
##
## Note: *p<0.1; **xp<0.05; **x*xp<0.01

##

## Call:

## glm(formula = chose_low_index ~ dif_Theoretic + dif_Lab + treatment,
H# family = quasibinomial, data = glm_data_AI)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max
## -1.70746 -0.35727 0.05075 0.36468 0.98000
##

## Coefficients:

#it Estimate Std. Error t value Pr(>lt])
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##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##

(Intercept) 0.35366 3.27231  0.108 0.914
dif_Theoretic 0.52780 6.65087  0.079 0.937
dif_Lab 1.20257 6.43804 0.187 0.852
treatment2 -0.05643 4.67265 -0.012 0.990
treatment3d -0.29228 4.61164 -0.063 0.950
treatment4 -0.48896 4.67583 -0.105 0.917
(Dispersion parameter for quasibinomial family taken to be 35.97692)

Null deviance: 47.97 on 78 degrees of freedom
Residual deviance: 21.86 on 73 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

Call:

glm(formula = chose_low_index ~ dif_Lab + treatment, family = quasibinomial,

data = glm_data_AI)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.68074 -0.35159 0.01347 0.31849 1.00477

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 0.4122 2.7816 0.148 0.883
dif_Lab 1.6699 2.4734 0.675 0.502
treatment2 -0.0326 4.0667 -0.008 0.994
treatment3  -0.3329 3.9850 -0.084 0.934
treatment4 -0.5306 4.0185 -0.132 0.895
(Dispersion parameter for quasibinomial family taken to be 27.10596)

Null deviance: 47.970 on 78 degrees of freedom
Residual deviance: 22.091 on 74 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

Call:

glm(formula = chose_low_index ~ dif_Theoretic + treatment, family = quasibinomial,

data = glm_data_AI)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6525 -0.3332 0.1155 0.3595 0.9427

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.2428 2.3852 0.102 0.919
dif_Theoretic 1.6859 2.2566 0.747 0.457
treatment2 -0.1296 3.4391 -0.038 0.970
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## treatment3 -0.1973 3.4125 -0.058 0.954

## treatment4d -0.3997 3.5041 -0.114 0.909

##

## (Dispersion parameter for quasibinomial family taken to be 20.51753)
##

## Null deviance: 47.970 on 78 degrees of freedom
## Residual deviance: 23.145 on 74 degrees of freedom
## AIC: NA

##

## Number of Fisher Scoring iterations: 6

## Analysis of Deviance Table

#

## Model 1: chose_low_index ~ dif_Theoretic + dif_Lab + treatment
## Model 2: chose_low_index ~ dif_Lab + treatment

## Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
## 1 73 21.860
## 2 74 22.091 -1 -0.23108 -0.22729 0.9366

## Analysis of Deviance Table

##

## Model 1: chose_low_index ~ dif_Theoretic + dif_Lab + treatment
## Model 2: chose_low_index ~ dif_Theoretic + treatment

## Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
## 1 73 21.860
## 2 74 23.145 -1 -1.2854 -1.3039 0.849

#appendix individual behavior
In this appendix we show how behavior in the mechanism and mechanism choice differs between individuals.

In the main analysis we have largely ignored individual differences driven by underlying cognitive processes
or characteristics of the subjects in the experiment. In this appendix we look at how individual differences
between subject impact choices within the AGV and SM mechanism.

First we generate a set of statistics of choices in the mechanisms. For each player, we summarize their
strategies by creating a variable that summarizes the fraction of rounds in which the SM (AGV) Bayes-
Nash equilibrium is played. That is, we create a variable that shows the fraction of SM (AGV) rounds in
which the subject voted sincerely (truthfully revealed their type). Table ?? shows the distribution of both
strategies. We split the fraction of AGV in to three groups of roughly equal size, since most subjects in the
SM mechanism always vote sincerely we created a dummy that captures whether the subject always votes
sincerely.

The Fisher-exact test shows that the few subjects who vote insincerely at some point are more likely to
miss-report at some point. ## Table 19: Distribution of strategies in AGV and SM.

##

##

## Cell Contents

##H |- |

## | N |

## |- |

##

#i#

## Total Observations in Table: 150
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##

##

##

## behavioral_stats$quartile_AGV

## -
# [0.000,0.600)

## ————

| behavioral_stats$SM_alwaysSincere
| |
| |
| |
| |
#H# [0.600,0.833) | 4 | 49
| |
| |
| |
| |
| |

1 | Row Total |

### —————
## [0.833,1.000]

##
## Column Total

## ————————————
##

##

## Fisher’s Exact Test for Count Data

## ———
## Alternative hypothesis: two.sided

## p = 5.419213e-05

##

##

Table 20: Relation between time spend on test questions and behavioral strate-
gies in the mechanisms.

Subjects that have issues understanding the instructions or the games might play the games differently.
We checked subjects understanding of the game by asking a set of control questions. Subjects could only
proceed to the actual experiment unless they answer all questions correctly. We use the time subjects spend
on this questions as a measure of understanding. If subjects take longer to correctly answer all questions,
they presummably had more issues identifying the correct answers. In the table below we see how the time
spent on the questionaire is related to the stratgies used in the games.

##

##

## Dependent variable:

# e
## frac_AGV

## glm: quasibinomial 0LS
## link = logit

## (1) (2) 3
# -
## Question_time -0.001x*

## (0.001)

##

## quintile_time[120, 183) 0.016 0.003
#i# (0.381) (0.084)
##

## quintile_time[183, 279) 0.237 0.049
## (0.368) (0.078)
##

## quintile_time[279, 417) -0.210 -0.047
## (0.344) (0.077)
##
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

quintile_time[417,1

treatment _number2

treatment_number3

treatment_number4

Constant

Observations

R2

Adjusted R2
Residual Std. Error
F Statistic

122] -0.295 -0.067
(0.360) (0.083)
-0.155 -0.166 -0.037
(0.243) (0.211) (0.049)
0.234 0.268 0.057
(0.287) (0.278) (0.060)
-0.248 -0.169 -0.038
(0.261) (0.224) (0.051)
1.021%**  0.737x* 0.676%**
(0.332) (0.388) (0.087)
150 150 150
0.038
-0.010

0.289 (df = 142)
0.796 (df = 7; 142)

Note: *p<0.1; **xp<0.05; ***xp<0.01
Dependent variable:
SM_alwaysSincere
logistic OLS
&N (2) (3)
Question_time —=0.004***
(0.001)
quintile_time[120, 183) 0.881 0.049
(0.714) (0.038)
quintile_time[183, 279) 0.124 0.014
(1.215) (0.076)
quintile_time[279, 417) -0.997 -0.093
(1.035) (0.093)
quintile_time[417,1122] -1.484 -0.169%x*
(0.906) (0.075)
treatment_number?2 -1.006% -0.883 -0.090
(0.570)  (0.567) (0.070)
treatment_number3 -0.405 -0.202 -0.020
(0.368) (0.238) (0.019)
treatment_number4 -0.977*x*x —0.842%%* =0.072%%*x*
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#i# (0.417) (0.306) (0.020)

#it

## Constant 3.758%x%x  3.048%*%* 0.966%**

## (0.654) (0.796) (0.049)

##

## -
## Observations 150 150 150

## R2 0.072

## Adjusted R2 0.026

## Log Likelihood -48.610 -47.741

## Akaike Inf. Crit. 107.220 111.483

## Residual Std. Error 0.314 (df = 142)
## F Statistic 1.564 (df = 7; 142)
##

## Note: *p<0.1; **p<0.05; **xp<0.01

Table 21: The effect of demographics on mechanism choice and strategies played.

#t

##

## Dependent variable:
#w  mmmmm e
## frac_AGV frac_SM
## (¢D) 2
#H
## support_AGV 0.936%

## (0.499)

#it

## support_SM 2.631%
## (1.495)
##

## Age -0.022 -0.014
it (0.027) (0.037)
#it

## as.factor(Gender)2 0.330 -0.196
## (0.287) (0.701)
##

## Orientation 0.003 0.373%
#it (0.073) (0.206)
#it

## risk_self -0.029 0.184
#it (0.057) (0.146)
##

## as.factor(econ_student)1 0.269 1.413%%
#it (0.178) (0.716)
##

## as.factor(treatment_number)?2 -0.267 -0.724
#i (0.260) (0.490)
##

## as.factor(treatment_number)3 0.128 0.333
#it (0.271) (0.613)
##

## as.factor(treatment_number)4 -0.268 -0.652
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## (0.261) (0.693)
##

## Constant 0.412 -1.611

## (0.992) (2.744)

##

### -
## Observations 150 150

#it

## Note: *p<0.1; *xp<0.05; **x*xp<0.01

Now do the same for the mechanism choices

#t

##

#i#t Dependent variable:

#  mmm e
## support_AGV support_SM
#t ¢D) (2)

## ————
## frac_AGV 0.764%

#it (0.447)

##

## frac_SM 0.787x*
#t (0.478)
##

## Age -0.016 —-0.041%xx
## (0.015) (0.008)
#t

## as.factor(Gender)2 -0.018 -0.053
## (0.145) (0.147)
##

## Orientation -0.003 —0.093%%x*
#t (0.046) (0.034)
#t

## risk_self 0.147*x*x -0.006
## (0.054) (0.024)
##

## as.factor(econ_student)1 0.095 -0.089
#t (0.253) (0.136)
#t

## as.factor(treatment_number)2 0.323*x*x* -0.057
#it (0.051) (0.192)
##

## as.factor(treatment_number)3 0.560%x* —-0.897*xx
#t (0.235) (0.222)
##

## as.factor(treatment_number)4 0.336 -0.539%x*
#i (0.282) (0.2486)
##

## Constant -0.299 2.250%*x*
#t (0.694) (0.548)
##

## -
## Observations 150 150
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#i#
## Note: *p<0.1; **p<0.05; ***p<0.01

28



	intro to file and data
	summary of the experiment.
	non-normalized comparison of realized utility
	Table 15: Theoretical and non-normalized average group surplus with AGV and SM (ex ante)
	effect of different reporting strategies AGV
	Best responses in the AGV
	Figure 4. Empirical best responses in the AGV mechanism

	Comparing the efficiency of the mechanisms in different settings
	Table 6: Efficient implementation in the AGV and SM mechanisms,
	Table 16: Logistic regression on efficient implementation decisions in SM and AGV

	power test of the efficient implementation tests
	Table 17: Contingency and Fisher exact test of the efficiency of AGV and RAND
	table 18: Logistic regression on efficient implementation decisions in AGV with RAND.
	Expected value per type, normalized
	mechanism choices as a function of expected utility
	Ad interim mechanism choices

	Figure 3: Distribution of expected utility differences and mechanism choices including GLM prediction.
	Table 20: Relation between time spend on test questions and behavioral strategies in the mechanisms.
	Table 21: The effect of demographics on mechanism choice and strategies played.


